Non-collapsing in fully non-linear curvature flows
نویسندگان
چکیده
منابع مشابه
Non-collapsing in fully nonlinear curvature flows
We consider embedded hypersurfaces evolving by fully nonlinear flows in which the normal speed of motion is a homogeneous degree one, concave or convex function of the principal curvatures, and prove a noncollapsing estimate: Precisely, the function which gives the curvature of the largest interior sphere touching the hypersurface at each point is a subsolution of the linearized flow equation i...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملNon-collapsing in Mean-convex Mean Curvature Flow
We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...
متن کاملnon-linear study of various slit shear walls in steel structures
seismic retrofit strategies have been developed in the past few decades following the introduction of new seismic provisions and the availability of advanced materials and methods. it can be observed that new approaches to deal with more lateral forces are more innovative and more energy absorbent. in line with this, there is a growing trend toward the use of steel shear walls as a system with ...
15 صفحه اولnon-linear ergodic theorems in complete non-positive curvature metric spaces
hadamard (or complete $cat(0)$) spaces are complete, non-positive curvature, metric spaces. here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. our results extend the standard non-linear ergodic theorems for non-expansive maps on real hilbert spaces, to non-expansive maps on had...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2013
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2012.05.003